
A Privacy Preserving and Data Dynamics for
Storage Security in Cloud Computing by using

Third Party Auditor
M.Gayathri#1, S.Kanchana#2, R.Rajkumar#3, Dr.S.Rajkumar#4

1. Assistant Professor, Computer Science and Engineering,

Dhanalakshmi Srinivasan college of Engineering, Perambalur – 621212, Tamilnadu, India.

2. Associate Professor, Computer Science and Engineering,

Indra Ganesan College of Engineering, Tiruchirappalli- 620012, Tamilnadu, India.

3. Senior Assistant Professor, Department of ComputerScience Engineering,

Chettinad College of Engineering &Technology, Karur-639114, Tamilnadu, India.

4. Assistant Professor, School of Mechanical and Electromechanical Engineering,
Hawassa Institute of Technology, Hawassa University. Hawassa, Ethiopia.

Abstract- Privacy preserving is a crucial technology in cloud
computing. The task of allowing Third Party Auditor, verify
the integrity of the dynamic data stored in the cloud. The
Third party auditor can eliminate the direct interaction
between the client and the cloud server. Our goal can be focus
on providing data dynamics and privacy preserving. To
achieve the efficient data dynamics by using the Classic
Markel Hash Tree construction for block tag authentication.
Bilinear aggregate signature to perform the multiple auditing
tasks. The proposed scheme does not leak any private
information. After that, through theoretical analysis and
experimental results, we demonstrate that the proposed
scheme has a good performance and highly efficient.

Keywords—Data Storage, Data dynamics, Privacy Preserving,
cloud computing.

I. INTRODUCTION

Cloud computing is an internet based development and
useof computer technology. “Cloud” brings many security
challenges. Data integrity verification at untrusted server in
the cloud data storage is one of the major concerns. An
increasing number of clients store their important data in
the remote servers in the cloud, without leaving a copy in
local computers. Sometimes the data stored in the cloud is
so important that the clients must ensure it is not lost or
corrupted. While it is easy to check data integrity after
completely downloading the data to be checked,
downloading large amounts of data just for checking data
integrity is a waste of communication bandwidth.

Electronic data and the client’s constrained resource
capability, the core of the problem can be generalized as
how can the client find an efficient way to perform
periodical integrity verifications without the local copy of
data files. In order to solve the problem of data integrity
checking, many schemes are proposed under different
systems and Security models. Although schemes with
private audit ability can achieve higher scheme efficiency,
public audit ability allows anyone, not just the client (data
owner), to challenge the cloud server for correctness of data
storage while keeping no private information.

Then, clients are able to delegate the evaluation of the
service performance to an independent third party auditor
(TPA), without devotion of their computation resources.
Remote data integrity checking can be introduced for
solving the problems and then propose RSA-based methods
for solving this problem. And then have the concept of
remote data storage auditing method based on pre-
computed challenge-response pairs. Recently many works
focus on pro-viding three advanced features for remote data
integrity checking scheme. The data dynamics, public
verifiability and privacy against verifiers. This scheme can
be support data dynamics at the block level, including
block insertion, block modification and block deletion and
also supports data append operation.

Considering the role of the verifier in the model the
schemes presented before fall into two categories: private
audit ability and public audit ability. Although schemes
with private audit ability can achieve higher scheme
efficiency, public audit ability allows anyone, not just the
client (data owner) to challenge the cloud server for
correctness of data storage while keeping no private
information. Then, clients are able to delegate the
evaluation of the service performance to an independent
third party auditor (TPA), without devotion of their
computation resources. In the cloud, the clients themselves
are unreliable or may not be able to afford the overhead of
performing frequent integrity checks. The outsourced data
themselves should not be required by the verifier for the
verification.

The following are the problems in the existing
strategies: Users’ outsourced data, which inevitably posse’s
new security risks towards the correctness of the data in
cloud. Dynamic data operations, especially to support block
insertion, which is missing in most existing schemes. It
does not guarantee the data availability in case of server
failures. Cloud Service Provider can monitor your activities.
Data Security, Cannot guarantee misuse of data at data
centers. Data theft, Hacking is on the increase and all data
is exposed on the internet.

M.Gayathri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 227-231

www.ijcsit.com 227

More existing in the designs is that of supporting
dynamic data operation for cloud data storage applications.
In Cloud Computing, the remotely stored electronic data
might not only be accessed but also updated by the clients,
e.g., through block modification, deletion, insertion, etc.
Unfortunately, the state of the art in the context of remote
data storage mainly focus on static data files and the
importance of this dynamic data updates has received
limited attention so far. The direct extension of the current
provable data possession (PDP) or proof of retrievability
(PoR) schemes to support data dynamics may lead to
security loopholes.

Fig. 1. Cloud data storage architecture.

In this paper, the above problems are addressed by
proposing and studying Public audit ability for storage
correctness assurance to allow anyone, not just the clients’
originally stored the file on cloud servers, to have the
capability to verify the correctness of the stored data on
demand. Dynamic data operation support: to allow the
clients to perform block-level operations on the data files
while maintaining the same level of data correctness
assurance. The design should be as efficient as possible so
as to ensure the seamless integration of public audit ability
and dynamic data operation support. Block less
verification: no challenged file blocks should be retrieved
by the verifier (E.g., TPA)

II. RELATED WORK

The context of remotely stored data verification, public
audit ability in their defined “provable data possession”
model for ensuring possession of files on untrusted storages.
In their scheme, they utilize RSA-based holomorphic tags
for auditing outsourced data, thus public audit ability is
achieved. Do not consider the case of dynamic data storage,
and the direct extension of their scheme from static data
storage to dynamic case may suffer design and security
problems. In their subsequent work propose a dynamic
version of the prior PDP scheme.

The system imposes a priori bound on the number of
queries and does not support fully dynamic data operations,
it can only allow very basic block operations with limited
functionality, and block insertions cannot be supported.
Dynamic datastorage in a distributed scenario, an both
determine the data correctness and locate possible errors.
And then consider partial support for dynamic data
operation. Then the “proof of retrievability” model, where

spot-checking and error-correcting codes are used to ensure
both “possession” and “retrievability” of data files on
archive service systems. Specifically, some special blocks
called “sentinels” are randomly embedded into the data file
F for detection purpose, and F is further encrypted to
protect the positions of these special blocks, the number of
queries a client can perform is also a fixed priori, and
“sentinels” prevents the development of realizing dynamic
data updates. PoR scheme with full proofs of security in the
security model. They use publicly verifiable homomorphic
authenticators built from BLS signature based on which the
proofs can be aggregated into a small authenticator value,
and public retriev ability is achieved. They extend the PDP
model in to support provable updates tos tored data files
using rank-based authenticated skip lists.This scheme is
essentially a fully dynamic version of the PDP solution.

To support updates, especially for blocki nsertion, they
eliminate the index information in the “tag” computation
and employ authenticated skip list data structure to
authenticate the tagi nformation of challenged or updated
blocks first before the verification procedure. However, the
efficiency of their scheme remains unclear.

Although the existing schemes aim at providing
integrity verification for different data storage systems, the
problem of supporting both public audit ability and data
dynamics has not been fully addressed. To achieve a secure
and efficient design to seamlessly integrate these two
important components for data storage. Generalize the
support of data dynamics to both PoR and PDP models and
discuss the impact of dynamic data
operations.Emphasizethatwhiledynamicdataupdatescanbepe
rformedefficientlyin PDP models more efficient protocols
need to be designed for the update of the encoded files in
PoR models. Data auditing scheme for the single client and
explicitly include a concrete description of the multi-client
data auditing scheme. And also present the performance
comparison between the multi-client data auditing scheme
and the individual auditing.

III. THE VERIFICATION SCHEME

A. System Model

Representative network architecture for cloud data
storage is illustrated in Figure. 1. Three different network
entities can be identified as follows:

1) Client: an entity, which has large data files to be stored
in the cloud and relies on the cloud for data maintenance
and computation, can be either individual consumers or
organizations.

2) Cloud Storage Server (CSS):An entity, which is
managed by Cloud Service Provider (CSP), has significant
storage space and computation resource o maintain the
clients’ data.

3) Third Party Auditor: An entity, which has expertise and
capabilities that clients do not have, is trusted to assess and
expose risk of cloud storage services on behalf of the
clients upon request. In the cloud paradigm, by putting the
large data files remote servers, the clients can be relieved
the burden of storage and computation.

M.Gayathri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 227-231

www.ijcsit.com 228

As clients no longer locally, it is of critical importance
for the clients to ensure that their data are being correctly
stored. That is, clients should be equipped with certain
security means so that they can periodically verify the
correctness of the remote data even without the existence of
local copies. In case that client’s necessarily had the time,
feasibility or resources to monitor their data, they can
delegate the monitoring task to a trusted TPA.

The verification schemes with public audit ability any
TPA in possession of the public key can act as a verifier.
We assume that TPA is unbiased while the server is
untrusted. For application purposes, the clients may interact
with the cloud servers via CSP to access or retrieve their
prestored data. More importantly, in practical scenarios, the
client may perform the block level operations such as
modification, insertion, and deletion.

B. Security model

The checking scheme is secure if 1) there exists no
polynomial- time algorithm that can cheat the verifier with
non-negligible probability; and 2) there exists a
polynomial- time extractor that can recover the original
data files by carrying out multiple challenges-responses.
The client or TPA can periodically challenge the storage
server to ensure the correctness of the cloud data, and the
original files can interact with the server this scheme is
correct if the verification algorithm accepts when
interacting with the valid proof and it is sound if any
cheating server that convinces the client it is storing the
data file is actually storing that file.

Note that in the “game” between the adversary and the
client, the adversary has full access to the information
stored in the server, i.e., the adversary can play the part of
the prover (server). The goal of the adversary is to cheat the
verifier successfully, i.e., trying to generate valid responses
and pass the data verification without being detected .Our
security model has subtle but crucial difference from that of
the existing PDP or PoR models in the verification process.
As mentioned above, these schemes do not consider
dynamic data operations, and the block construction
insertion cannot be supported at all.

This is because of the signatures is involved with the
file index information i. Therefore, once a file block is
inserted, the computation overhead is unacceptable since
the signatures of all the following file blocks should be
recomputed with the new indexes. To deal with this
limitation, we remove the index information i in the
computation of signatures.

C. Preserving Public Auditing Scheme

We propose to uniquely integrate the homomorphic
authenticator with random masking technique. In our
protocol, the linear combination of sampled blocks in the
server’s response is masked with randomness generated by
a pseudo random function (PRF).With random masking,
the TPA no longer has all the necessary information to
build up a correct group of linear equations and therefore
cannot derive the user’s data content, no matter how many
linear combinations of the same set of file blocks can be
collected. Meanwhile, due to the algebraic property of the

homomorphic authenticator, the correctness validation of
the block-authenticator pairs will not be affected by the
randomness generated from a PRF.

D. Construct Public Auditing System

The public auditing system can be constructed in two
phases ,Setup and Audit Setup. The user initializes the
public and secret parameters of the system by executing
KeyGen, and pre-processes the data file F by using SigGen
to generate the verification metadata. The user then store
the data file F at the cloud server, deletes its local copy, and
publishes the verification metadata to TPA for later audit.
As part of pre-processing, the user may alter the data file F
by expanding it or including additional metadata to be
stored at server. The data are received by sign on it Audit.

The TPA issues an audit message or challenge to the
cloud server to make sure that the cloud server has retained
the data file F properly at the time of the audit. The cloud
server will derive a response message from a function of
the stored data file F by executing GenProof. Using the
verification metadata, the TPA verifies the response via
Verify Proof. Keygen Process have the batch signature
scheme based on the BLS signature. The BLS signature
scheme uses a cryptographic primitive called pairing,
which can be defined as a map over two cyclic groups G1
and G2.
The BLS signature scheme consists of three phases:
1. In the key generation phase, a sender chooses a random
integer and computes. The private key is x and the public
key is y.
2. Given a message in the signing phase, the sender first
computes, where h () is a hash function, and then computes
the signature of m.
3. In the verification phase, the receiver first computes and
then checks whether. If the verification succeeds, then the
message m is authentic. Merits: It can generate a very short
signature. It can solve communication overhead.

1) Problem Formulation :Denote by m the file that will be
stored in the untrusted server, which is divided into n
blocks of equal lengths:

m = m1, m2...mn, where n = |m|/l.Here l is the length of each
file block. Denote by fK(·) a pseudo-random function which
is defined as:
f : {0,1}k× {0,1}log2(n)→ {0,1}d,in which k and d are two
security parameters, and then denote the length of N in bits
by |N|. To design a remote data integrity checking protocol
that includes the following five functions: Set Up,TagGen,
Challenge, GenProof and CheckProof.
SetUp (1k) → (pk,sk): Given the security parameter k, this
function generates the public key pk and the secret key
sk,pk is public to everyone, while sk is kept secret by
theclient.
Tag Gen (pk,sk,m) → Dm: Given pk, sk and m, this
function computes a verification tag Dm and makes it
publicly known to everyone. This tag will be used for
public verification of data integrity.
Challenge (pk, Dm) → chal: Using this function, the verifier
generates a challenge chal to request for the integrity proof
of file m. The verifier sends chal to the server.

M.Gayathri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 227-231

www.ijcsit.com 229

Gen Proof (pk, Dm, m, chal) → R: Using this function, the
server computes a response R to the challenge. The verifier
checks the validity of the response R. If it is valid, the
function outputs “success”, otherwise the function outputs
“failure”. The secret key sk is not needed in the Check
Proof function.

2) Merkle hash tree :A Merkle Hash Tree (MHT) is a
well-studied authentication structure which is intended to
efficiently and securely prove that a set of elements are
undamaged and unaltered. It is constructed as a binary tree
where the leaves in the MHT are the hashes of authentic
data values. The verifier with the authentic hr requests for
{x2, x7} and requires the authentication of the received
blocks.

The prover provides the verifier with the auxiliary
authentication information (AAI) Ω2<h(x1), hd> and Ω7 =<h
(xs, he>. The verifier can then verify x2and
x7byfirstcomputing h(x2),h(x7),h(h(x1)||h(x2))),
hf=h(h(x7||h(x8)),ha=h(hc||hd), hb=h(he||hf) and
hr=h(ha||hb),and then checking if the calculated hr is the
same as the authentic one. MHT is commonly used to
authenticate the values of data blocks. However, in this
paper, we further employ MHT to authenticate both the
values and the positions of data blocks. We treat the leaf
nodes as the left-to-right sequence, so any leaf node can be
uniquely determined by following this sequence and the
way of computing the root in MHT.

Fig. 2.Merkle Hash Tree

Another basic solution is to use signatures instead of MACs
to obtain public auditability.
The data owner Precomputes the signature of each block
and sends both F and the signatures to the cloud server for
storage.
To verify the correctness of F, the data owner can adopt a
spot-checking approach, i.e., requesting a number of
randomly selected blocks and their corresponding
signatures to be returned. This basic solution can provide
probabilistic assurance of the data correctness and support
public auditability. However, it also severely suffers from
the fact that a considerable number of original data blocks
should be retrieved to ensure a reasonable detection
probability, which again could result in a large
communication overhead and greatly affects system
efficiency. Notice that the above solutions can only support
the case of static data, and none of them can deal with
dynamic data updates.

3) Default Integrity Verification: The client or TPA can
verify the integrity of the out sourced data by challenging
the server. Before challenging, the TPA first uses pk to
verify the signature on t. If the verification fails, reject by

emitting FALSE; otherwise, recover u. To generate the
message “chal,” the TPA (verifier) picks a random c-
element subset I = {s1;s2;...;sc} of set [1,n],where we
assume s1<…< sc. For each i € I the TPA chooses a random
element Vi← B© Zp. The message “chal” specifies the
positions of the blocks to be checked in this challenge
phase. The verifier sends the chal {(i, vi)}the prover
(server).both the data blocks and the corresponding
signature blocks are aggregated into a single block,
respectively .Inaddition, the prover will also provide the
verifier with a small amount of auxiliary information.

i) Update Operation :In cloud data storage, sometimes the
user may need to modify some data block(s) stored in the
cloud, from its current value fij to a new one, fij + Δ fij. We
refer this operation as data update.

ii) Delete Operation: Sometimes, after being stored in the
cloud, certain data blocks may need to be deleted. The
delete operation we are considering is a general one, in
which user replaces the data block with zero or some
special reserved data symbol. From this point of view, the
delete operation is actually a special case of the data update
operation, where the original data blocks can be replaced
with zeros or some predetermined special blocks.

iii) Append Operation: In some cases, the user may want to
increase the size of his stored data by adding blocks at the
end of the data file, which we refer as data append. We
anticipate that the most frequent append operation in cloud
data storage is bulk append, in which the user needs to
upload a large number of blocks at one time.

4) Designs for distributed data storage security: To
further enhance the availability of the data storage
security,individual user’s data can be redundantly stored in
multiple physical locations. That is, besides being exploited
individual servers, data redundancy can also be employed
across multiple servers to tolerate faults or server crashes a
suser’s data grow in size and importance. It is well known
that erasure-correcting code can be used to tolerate multiple
failures in distributed storage systems.

In cloud datastorage, we can rely on this technique to
disperse the data file F redundantly across a set of n ¼ m þ
k distributed servers. A ½m þ k;k?-Reed-Solomon code is
used to create k redundancy parity vectors from m data
vectors in such away that the original m data vectors can be
reconstructed from any m out of the m þ k data and parity
vectors. By placing each of the m þ k vectors on a different
server, the original data file can survive the failure of any k
of them þ k servers without any data loss. Such a
distributed cryptographic system allows a set of servers to
prove to a client that a stored file is intact and retrievable.

IV. PERFORMANCE ANALYSIS

Make a comparison of our scheme and the state of the
art.The scheme in [14] extends the original PDP [2] to
support data dynamics using authenticated skip list. Thus,
we call it DPDP scheme thereafter. For the sake of
completeness, we implemented our BLS and RSA-based
instantiations as well as the state-of-the-art scheme in
Linux.

M.Gayathri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 227-231

www.ijcsit.com 230

Our experiment is conducted using C on a system with
an Intel Core 2 processor running at 2.4 GHz, 768 MB
RAM, and a7200 RPM Western Digital 250 GB
Comparisons of Different Remote Data Integrity Checking
Schemes. The security parameter is eliminated in the costs
estimation for simplicity. The scheme only supports
bounded number of integrity challenges and partially data
updates, i.e., data insertion is not supported. y No explicit
implementation of public auditability is given for this
scheme.8 MB buffer are implemented using the Pairing-
Based Cryptography (PBC)library version 0.4.18 and the
crypto library of Open SSLversion 0.9.8h. To achieve 80-
bit security parameter, the curve group we work on has a
160-bit group order and the size of modulus N is 1,024 bits.
All results are the averages of 10 trials.

The performance metrics for 1 GBfile under various
erasure code Due to the smaller block size compared to
RSA-based instantiation, our BLS-based instantiation is
more than two times faster than the other two in terms of
server computation time larger computation cost at the
verifier side as the pairing operation in BLS can perform
scheme consumes more time than RSA techniques. The
communication cost of DPDP scheme is the largest among
the three in practice. The tuple values associated with each
skip list node for one proof, which results in extra
communication cost as compared to our constructions. The
communication over-head of our RSA-based instantiation
and DPDP scheme under different block. We can see that
the communication cost grows almost linearly as the block
size increases, which is in caused by the increasing in size
of the verification block. However, the experiments suggest
that when block size is chosen around16 KB, both schemes
can achieve an optimal point that minimizes the total
communication cost.

Conduct experiments for multi-client batch auditing and
demonstrate its efficiency, where the number of clients in
the system is increased from 1 to 100 with intervals of 4. A
batch auditing not only enables simultaneously verification
from multiple-client, but also reduces the computation cost
on the TPA side. Given total K clients in the system, the
batch auditing equation helps reduce the number of
expensive pairing operations from 2K, as required in the
individual auditing, to K þ 1.

Thus, a certain amount of auditing time is expected to
be saved. Specifically, following the same experiment
setting a ϼ=99% and 97%, batch auditing indeed saves
TPA’s computation overhead for about 5 and14 %
respectively. Note that in order to maintain detection
probability of 99% the random sample size in TPA’s

challenge for ϼ=99% is quite larger than ϼ= 97,as this
sample size is also a dominant factor of auditing time, this
explains why batch auditing for ϼ= 99% is not as efficient
as for ϼ= 97%.

V. CONCLUSION

The public auditability for cloud data storage security is
of critical importance so that users can resort to an external
audit party to check the integrity of outsourced data when
needed. This work studies the problem of ensuring the
integrity of data storage in Cloud Computing. In particular,
we consider the task of allowing a third party auditor (TPA),
on behalf of the cloud client, to verify the integrity of the
dynamic data stored in the cloud. We utilize and uniquely
combine the public key based homomorphic authenticator
with random masking to achieve the privacy-preserving
public cloud data auditing system.

This scheme is the first to support scalable and efficient
public auditing in the Cloud Computing. The technique of
Bilinear Aggregate signature is used to achieve batch
auditing, where TPA can perform multiple auditing tasks
simultaneously. The data in the cloud does not remain static.
Unlike most prior works, the new scheme further supports
secure and efficient dynamic operations on data blocks
stored in the cloud, including: data update, delete and
append.

REFERENCES
[1]. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, (2007), ‘Provable Data Possession at Untrusted
Stores’, Proc. IEEE /ACM pp. 598-609.

[2]. Bowers, A. Juels, and A. Oprea (2009),’Hail: A High-Availability
and Integrity Layer for Cloud Storage’, Proc. IEEE in computer
communication pp. 187-198.

[3]. C. Chang and J. Xu, (2008), ‘Remote Integrity Check with
Dishonest Storage Server’, Proc IEEE/ACM, pp. 223-237.

[4]. Craig Gentry, Dan Boneh, (2004) ,”Aggregate and verifiably
encrypted signatures from bilinear maps”.

[5]. Craig Gentry, Dan Boneh, (2004) ,”Aggregate and verifiably
encrypted signatures from bilinear maps”.

[6]. Ferrara, M. Greeny, S. Hohenberger, M. Pedersen (2009),
"Practical short signature batch verification".

[7]. Juels.A and B.S. Kaliski Jr., (2007), ‘Pors: Proofs of Retrievability
for Large Files’, IEEE in computer and communication security, pp.
584-597.

[8]. M.A. Shah, R. Swaminathan, and M. Baker (2008), ‘Privacy-
Preserving Audit and Extraction of Digital Contents’, IEEE
Cryptology Archive.

[9]. T. Schwarz and E.L. Miller,(2006) “Store, Forget, and Check:
Using Algebraic Signatures to Check Remotely Administered
Storage”.

[10]. Wang, K. Ren, W. Lou (2010), “Achieving secure, scalable, and
fine-grained access control in cloud computing

[11]. ”.

M.Gayathri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 227-231

www.ijcsit.com 231

